Krummlinige Koordinaten Beispiel Essay

Inertialsystem

Ein Bezugssystem in der Physik heißt Inertialsystem (von lateinischinertia für „Trägheit“), wenn jeder kräftefreie Körper relativ zu diesem Bezugssystem in Ruhe verharrt oder sich gleichförmig (unbeschleunigt) und geradlinig bewegt. Kräftefrei bedeutet, dass der Körper keine Kräfte von anderen Objekten erfährt oder diese sich insgesamt aufheben, sodass die resultierende Kraft null ist.

Falls sich ein Körper, obwohl er in diesem Sinn kräftefrei ist, relativ zu einem bestimmten Bezugsystem beschleunigt oder krummlinig bewegt, so werden die auftretenden Beschleunigungen auf Trägheitskräfte zurückgeführt. Diese rühren daher, dass das Bezugssystem gegenüber einem Inertialsystem in Rotation oder anderweitig beschleunigter Bewegung ist. Trägheitskräfte gehen nicht von anderen Körpern aus und werden bei der Beurteilung der Kräftefreiheit nicht mitgezählt. In einem Inertialsystem gibt es keine Trägheitskräfte.

Zum Beispiel ist wegen der Erdrotation die Erdoberfläche kein Inertialsystem. Die dadurch verursachten Trägheitskräfte sind aber meist nicht zu bemerken, weshalb ein mit der Erdoberfläche verbundenes Bezugssystem praktisch in sehr guter Näherung ein Inertialsystem ist. In einem Inertialsystem dreht sich der Fixstern­himmel nicht. Die beste zurzeit bekannte Realisierung eines Inertialsystems ist der in der Astronomie definierte Inertialraum.

In den modernen Werken zur theoretischen Mechanik wird das Inertialsystem oft allein mithilfe des Trägheitssatzes definiert, der das erste der drei Newtonschen Axiome wiedergibt.[1][2] Für eine vollständige Definition sind aber alle drei Newtonschen Axiome erforderlich:[3] Das erste nennt die geradlinig-gleichförmige Bewegung von kräftefreien Körpern als wesentliche Eigenschaft eines Inertialsystems. Das zweite definiert allgemein die Kräfte durch die von ihnen verursachten Beschleunigungen. Das dritte schließlich verlangt, dass es zu jeder Kraft eine Gegenkraft geben muss, sodass hier ausschließlich Kräfte gemeint sind, die auf Wechselwirkungen zwischen Körpern zurückgehen, was auf Trägheitskräfte gerade nicht zutrifft.

Der Begriff „Inertialsystem“ wurde erstmals 1885 von Ludwig Lange herausgearbeitet, der (nach Ernst Mach) den dabei benötigten Begriff des kräftefreien Körpers so präzisierte: Der kräftefreie Körper kann als von anderer Materie „unendlich“ weit entfernt gedacht werden. Gleichbedeutend sei (nach James Maxwell), den Trägheitssatz negativ auszudrücken: Immer, wenn ein in einem Inertialsystem beobachteter Körper sich nicht geradlinig-gleichförmig bewegt, ist das von Kräften verursacht, die von anderen Körpern ausgehen.[4](S. 271)

Hintergrund

Derselbe physikalische Vorgang wird von verschiedenen Beobachtern im Allgemeinen unterschiedlich beschrieben. Ein Beispiel: Für einen Beobachter auf der Erde dreht sich die Sonne um die Erde und die Planeten bewegen sich auf manchmal schleifenförmigen Bahnen, während ein Beobachter auf der Sonne sieht, dass sich die Erde wie die Planeten um die Sonne bewegt. Die Bewegung lässt sich daher nur relativ zu einem Bezugssystem, also zum Standpunkt eines Beobachters, beschreiben. Wenn die Bewegungen verschieden erscheinen, würden Beobachter, die den Einfluss der Wahl des Bezugssystem nicht berücksichtigen, denselben Vorgang durch verschiedene physikalische Ursachen zu erklären haben.

Das trifft insbesondere für Bewegungen von Körpern zu, die nicht geradlinig-gleichförmig ablaufen. Inertialsysteme sind die Bezugssysteme, in denen jede Abweichung von der geradlinig-gleichförmigen Bewegung eines Körpers auf den Einfluss einer Kraft zurückgeführt werden kann, die von einem anderen Körper ausgeht. In ihnen gilt also das Trägheitsprinzip. Verschiedene Inertialsysteme können sich durch eine geradlinig-gleichförmige Translationsbewegung unterscheiden. Jede Rotation oder andere Beschleunigung des Bezugssystems führt dazu, dass kräftefreie Körper sich nicht immer geradlinig-gleichförmig bewegen. Dies wird durch das Einwirken von Trägheitskräften beschrieben, die nicht von anderen Körpern erzeugt werden, sondern für den betreffenden Beobachter nur durch die Beschleunigung seines Bezugssystems. Da in einem Inertialsystem keine Trägheitskraft auftritt, können hier im Prinzip die Bewegungsgleichungen der Mechanik die einfachste Form haben. Dennoch ist es in vielen Bereichen vorteilhaft, die Vorgänge in einem beschleunigten Bezugssystem zu betrachten, wenn dieses aus praktischen Gründen günstiger ist (z. B. in den Geowissenschaften).

Eine Unbestimmtheit ergibt sich daraus, dass die Trägheitskraft, die durch eine konstante geradlinige Beschleunigung hervorgerufen wird, sich in nichts von einer Gravitationskraft in einem konstanten, homogenen Schwerefeld mit entsprechend gewählter Stärke unterscheidet (Äquivalenzprinzip). Daher kann man auch ein konstant und geradlinig beschleunigtes Bezugssystem als ein Inertialsystem ansehen, in dem nur eine veränderte Gravitation herrscht. Wenn das Gravitationsfeld homogen ist und die Beschleunigung des Bezugssystems gerade dem freien Fall entspricht, ist die Gravitation durch die Trägheitskraft sogar exakt kompensiert. Der Zustand der Schwerelosigkeit in Raumstationen ist hierfür eine lokale Annäherung, insoweit das Gravitationsfeld der Erde als homogen angesehen werden kann. (Ein exakt homogenes Gravitationsfeld gibt es nicht.) In diesem Sinne kann man auch Bezugssysteme, die gegeneinander beschleunigt sind, Inertialsysteme nennen. Noch weiter gehend ist der Grundgedanke der Allgemeinen Relativitätstheorie: Nur Bezugssysteme, die sich im freien Fall befinden, sind Inertialsysteme, und das ganze Phänomen der Gravitation erklärt sich durch die Trägheitskraft, die man in einem dagegen beschleunigten Bezugssystem beobachtet.

Newtonsche Mechanik

Am einfachsten kann man sich ein Inertialsystem als ein Bezugssystem an einem weit entfernten Ort im Weltall in völliger Schwerelosigkeit vorstellen, also fernab von größeren Massen, die durch ihre Gravitation die Bewegung von Körpern stören könnten. Die räumlichen Koordinaten können dann relativ zu einem beliebigen kräftefreien Bezugskörper angegeben werden, der als „ruhend“ betrachtet wird. Was genau als „Ruhe“ zu verstehen ist, ist in einem solchen System vollkommen willkürlich. Das besagt das galileische Relativitätsprinzip. Ein zweiter Körper, der sich in diesem Bezugssystem gleichförmig und geradlinig bewegt, ist ebenfalls kräftefrei. Er könnte also selbst Bezugspunkt für ein zweites Inertialsystem sein. In anderen Worten: Jedes Bezugssystem, das sich relativ zu einem Inertialsystem gleichförmig und geradlinig bewegt, ist ebenfalls ein Inertialsystem. Daher gibt es in der Newtonschen Mechanik unendlich viele Inertialsysteme. Die räumlichen und zeitlichen Koordinaten zweier Inertialsysteme hängen über eine Galilei-Transformation zusammen.

Umgekehrt gilt, dass jedes Bezugssystem, das sich relativ zu einem Inertialsystem beschleunigt bewegt, selbst kein Inertialsystem ist. In einem solchen beschleunigten Bezugssystem lässt sich der Trägheitssatz nicht ohne Weiteres anwenden. Um die beschleunigten oder krummlinigen Bewegungen von Körpern in beschleunigten Bezugssystemen korrekt begründen zu können, bedarf es der Annahme von sogenannten Trägheitskräften, für die sich keine reale Ursache finden und keine Reactio angeben lässt.

Galilei-Transformationen bilden bzgl. der Hintereinanderausführung eine Gruppe. Zu ihr gehören die einfachen zeitlichen oder räumlichen Verschiebungen. Da ein Inertialsystem bei einer räumlichen oder zeitlichen Verschiebung in ein Inertialsystem übergeht, zeichnen Inertialsysteme keinen Ort und keinen Zeitpunkt aus. Der Raum und die Zeit sind homogen.

Zur Galilei-Gruppe gehört auch die endliche Drehung, die die Bezugsrichtungen (vorn, links, oben) des einen Systems auf die zeitlich unveränderlichen Richtungen des anderen Systems abbildet. Da ein Inertialsystem bei einer Drehung in ein Inertialsystem übergeht, zeichnen Inertialsysteme keine Richtung aus. Der Raum ist isotrop.

Ein Inertialsystem lässt sich daher definieren als ein Bezugssystem, bezüglich dessen der Raum homogen und isotrop, und die Zeit homogen ist.[5]

Zur Galilei-Gruppe gehört schließlich die Transformation

durch die ein Koordinatensystem mit gleichbleibender Geschwindigkeit gegen ein anderes bewegt wird.

Da die Gesetze der newtonschen Mechanik in allen Inertialsystemen in gleicher Form gelten, gibt es kein bevorzugtes Bezugssystem und keine Möglichkeit, eine Geschwindigkeit absolut zu messen. Dies ist das Relativitätsprinzip der newtonschen Mechanik.

Spezielle Relativitätstheorie

Statt der Galilei-Transformation zwischen Inertialsystemen der Newtonschen Physik vermitteln in der relativistischen Physik Lorentz-Transformationen und raum-zeitliche Verschiebungen, wie die Koordinaten zusammenhängen, mit denen gleichförmig bewegte Beobachter bezeichnen, wann und wo Ereignisse stattfinden. Zusammen mit den räumlichen und zeitlichen Verschiebungen bilden Lorentztransformationen die Poincaré-Gruppe.

Nach folgendem idealisierten Verfahren ordnet ein gleichförmig bewegter Beobachter wie beim Radar jedem Ereignis seine inertialen Koordinaten zu: Er sendet einen Lichtstrahl zum Ereignis und misst mit seiner Uhr die Startzeit und die Zeit , zu der der beim Ereignis reflektierte Lichtstrahl wieder bei ihm eintrifft. Als Zeit, zu der das Ereignis stattgefunden hat, verwendet er den Mittelwert

als Entfernung die Hälfte der Laufzeit des hin und her laufenden Lichtes mal der Lichtgeschwindigkeit :

Darüber hinaus bestimmt er Winkel und zwischen Bezugsrichtungen, die er gewählt hat, und dem auslaufenden Lichtstrahl. Damit ordnet er dem Ereignis folgende Koordinaten zu:

Der reflektierte Lichtstrahl kommt nur dann für jedes Ereignis aus der Richtung des auslaufenden Lichtstrahls zurück, wenn sich der Beobachter nicht dreht. Auf diese Art kann der Beobachter unterscheiden, ob er sich dreht oder ob er von anderen Objekten umkreist wird.

Allgemeine Relativitätstheorie

Die allgemeine Relativitätstheorie ist so formuliert, dass ihre Gleichungen in jedem Koordinatensystem gelten. Die Weltlinien frei fallender Teilchen sind die Geraden (genauer Geodäten) der gekrümmten Raumzeit. Gravitation zeigt sich im freien Fall an der Gezeitenwirkung, dass benachbarte Geodäten aufeinander zu oder voneinander weg streben und sich wiederholt schneiden können. Umkreisen beispielsweise zwei Raumstationen mit gleichem konstanten Abstand in verschiedenen Ebenen die Erde, so schneiden sich ihre Bahnkurven dort, wo sich die Bahnebenen schneiden, danach nimmt ihr Abstand zu, bis sie einen Viertelkreis durchlaufen haben, dann wieder ab, bis sich ihre Bahn nach einem Halbkreis wieder kreuzt. Diese Auswirkung ungleichmäßiger Gravitation (sie wirkt an verschiedenen Orten in verschiedene Richtung oder mit verschiedener Stärke) heißt Gezeitenwirkung. Sie nimmt bei kleinen Abständen mit dem Abstand zu. Kann man die Gezeitenwirkung vernachlässigen, so gilt im freien Fall die spezielle Relativitätstheorie.

Siehe auch

Einzelnachweise

  1. ↑ Fließbach: Lehrbuch zur Theoretischen Physik I – Mechanik. Springer, 7. Auflage, 2015, S. 9.: „Es gibt Bezugssysteme, in denen die kräftefreie Bewegung mit konstanter Geschwindigkeit erfolgt. Dies sind Intertialsysteme.“
  2. ↑ Henz, Langhanke: Pfade durch die Theoretische Mechanik 1. Springer, 2016, S. 42. „Es gibt Koordinatensysteme, in denen sich jeder kräftefreie Massepunkt geradlinig gleichförmig bewegt oder ruht. Diese besonders wichtigen Koordinatensysteme werden Inertialsysteme genannt.“
    Beinahe gleichlautend auch bei Nolting: Grundkurs Theoretische Physik 1 – Klassische Mechanik, Springer, 10. Auflage, 2013, S. 173.
  3. ↑ Nayaran Rana, Pramod Joag: Classical Mechanics. 24. Auflage. Tata McGraw-Hill Education, New Delhi 2001, ISBN 0-07-460315-9, S. 9. 
  4. ↑ Ludwig Lange: Ueber die wissenschaftliche Fassung des Galilei’schen Beharrungsgesetzes. In: W. Wundt (Hrsg.): Philosophische Studien. Band 2, 1885, S. 266 ff. (online[abgerufen am 12. Juni 2017]). 
  5. ↑ L. D. Landau, E. M. Lifshitz: Mechanics. Pergamon Press, 1960, S. 4–6. 

Literatur

  • Ernst Schmutzer: Grundlagen der Theoretischen Physik. 3. Auflage. Band 1. Wiley-VCH, 2005, ISBN 978-3-527-40555-8. 
  • Walter Greiner: Theoretische Physik – 1. Klassische Mechanik 1. 8. Auflage. Band 1. Europa-Lehrmittel, 2007, ISBN 978-3-8085-5564-4. 
  • Martin Mayr: Technische Mechanik: Statik, Kinematik, Kinetik, Schwingungen, Festigkeitslehre. 7. Auflage. Carl Hanser Verlag, 2012, ISBN 978-3-446-43400-4. 

Weblinks

Krummlinige Koordinaten sind Koordinatensysteme auf dem euklidischen Raum, bei denen die Koordinatenlinien gekrümmt sein können und die diffeomorph zu kartesischen Koordinaten sind.[1] Das heißt, die Transformation zwischen kartesischen Koordinaten und krummlinigen Koordinaten muss lokal invertierbar sein, wobei die Abbildung wie auch die Umkehrabbildungstetig differenzierbar sein müssen.

Die am häufigsten verwendeten krummlinigen Koordinatensysteme, die beide zu den orthogonalen Koordinatensystemen zählen, sind:

Je nach Problemstellung sind Berechnungen in krummlinigen Koordinatensystemen einfacher als in kartesischen durchzuführen. Zum Beispiel sind physikalische Systeme mit Radialsymmetrie oft einfacher in Kugelkoordinaten zu behandeln.

Folgende Ausführungen beziehen sich speziell auf den dreidimensionalen euklidischen Raum, vieles davon lässt sich jedoch auf den -dimensionalen Fall erweitern.

Transformation von kartesischen Koordinaten[Bearbeiten | Quelltext bearbeiten]

Koordinaten eines Punktes im -dimensionalen Raum sind ein Tupel aus reellen Zahlen, die bezüglich eines speziellen Koordinatensystems bestimmt werden. Im Folgenden werden für einen Punkt die Koordinaten in zwei verschiedenen Koordinatensystemen betrachtet.

Die kartesischen Koordinaten lassen sich als stetig differenzierbare Funktionen neuer Koordinaten schreiben (direkte Transformation):

,     ,   …  

Dies stellt ein Gleichungssystem dar, das invertierbar (also nach den auflösbar) ist (inverse Transformation)

,     ,   …  

wenn die inverse Funktionaldeterminante ungleich null oder unendlich ist:

.

Die inverse Transformation muss ebenso wie die direkte Transformation stetig differenzierbar sein.

Für die Punkte, in denen die Transformation umkehrbar eindeutig ist, heißt die Transformation regulär, sonst singulär. Dann gilt: Ist ein Punkt mit den kartesischen Koordinaten gegeben, so können mit Hilfe der inversen Transformation eindeutig die Koordinaten , die krummlinigen Koordinaten von , berechnet werden. Jeder reguläre Punkt des Raums kann eindeutig sowohl durch die als auch äquivalent durch die beschrieben werden.

Ein Satz von Transformationsgleichungen mit den oben beschriebenen Eigenschaften zusammen mit einem kartesischen Koordinatensystem definiert ein krummliniges Koordinatensystem.

Koordinatenflächen, -linien und -achsen[Bearbeiten | Quelltext bearbeiten]

Die Begriffe Koordinatenflächen, -linien und -achsen werden im Folgenden anhand des dreidimensionalen Raums anschaulich erläutert.

Koordinatenflächen erhält man, indem jeweils eine Koordinate festgehalten () und die beiden anderen variiert werden.

  mit  

Durch jeden nicht-singulären Punkt geht genau eine Fläche jeder Flächenschar .

Koordinatenlinien erhält man, indem jeweils zwei Koordinaten festgehalten ( mit ) und die dritte variiert wird, d. h. als Schnittmenge zweier Koordinatenflächen für unterschiedliche Koordinaten.

  mit  

Obige Bedingung für die Funktionaldeterminante bedeutet, dass in jedem Punkt des 3-dimensionalen Raumes sich nur 3 Koordinatenlinien schneiden dürfen, da sonst dieser Punkt keine eindeutigen Koordinaten besitzt (Funktionaldeterminante gleich null).

Als Beispiel für eine Uneindeutigkeit zählt die -Achse bei Kugelkoordinaten, an der sich alle Ebenen ( ist der Azimutwinkel) schneiden; somit sind die Koordinaten von Punkten auf der -Achse nicht eindeutig (, aber beliebig). Solche Punkte heißen singuläre Punkte der Transformation.

Schneiden sich die Koordinatenlinien unter rechten Winkeln, so heißt das Koordinatensystem orthogonal.

Die Koordinatenachsen sind als Tangenten an die Koordinatenlinien definiert. Da die Koordinatenlinien im Allgemeinen gekrümmt sind, sind die Koordinatenachsen nicht räumlich fest, wie es für kartesische Koordinaten gilt. Dies führt auf das Konzept der lokalen Basisvektoren, deren Richtung vom betrachteten Raumpunkt abhängt – im Gegensatz zu globalen Basisvektoren der kartesischen oder affinen Koordinaten.

Verschiedene Basen[Bearbeiten | Quelltext bearbeiten]

Um einen Vektor mittels Koordinaten darstellen zu können, ist eine Basis nötig. Im -dimensionalen Raum besteht diese aus linear unabhängigen Vektoren, den Basisvektoren. Jeder beliebige Vektor kann als Linearkombination der Basisvektoren dargestellt werden, wobei die Koeffizienten der Linearkombination die Komponenten des Vektors genannt werden.

Für echt krummlinige (also nicht-geradlinige) Koordinaten variieren Basisvektoren und Komponenten von Punkt zu Punkt, weshalb die Basis als lokale Basis bezeichnet wird. Die Ortsabhängigkeit eines Vektorfeldes verteilt sich auf die Koordinaten sowie auf die Basisvektoren. Im Gegensatz dazu zeichnen sich globale Basen dadurch aus, dass die Basisvektoren in jedem Punkt identisch sind, was nur für lineare bzw. affine Koordinaten (die Koordinatenlinien sind geradlinig, aber im Allgemeinen schiefwinklig) möglich ist. Die Ortsabhängigkeit eines Vektorfeldes steckt bei geradlinigen Koordinatensystemen allein in den Koordinaten.

Um Basisvektoren mit einem Koordinatensystem zu verknüpfen gibt es zwei gebräuchliche Methoden:

  • kovariante Basisvektoren: Tangential an die Koordinatenlinien, d. h. kollinear zu den Koordinatenachsen
  • kontravariante Basisvektoren: Normal zu den Koordinatenflächen

Die beiden Klassen von Basisvektoren sind dual bzw. reziprok zueinander. Diese beiden Basen bezeichnet man als holonome Basen. Sie unterscheiden sich in ihrem Transformationsverhalten unter Koordinatenwechsel. Dabei sind die Transformationen invers zueinander.

An jedem Punkt der betrachteten Mannigfaltigkeit existieren gleichzeitig beide Basen. Somit kann ein beliebiger Vektor als Linearkombination entweder der kovarianten Basisvektoren oder der kontravarianten Basisvektoren dargestellt werden. Dabei werden stets kontravariante Komponenten mit kovarianten Basisvektoren kombiniert und kovariante Komponenten mit kontravarianten Basisvektoren .

Diese kreuzweise Paarung (kontra-ko bzw. ko-kontra) sorgt dafür, dass der Vektor unter Koordinatentransformation invariant ist, da die Transformationen von Komponenten und Basisvektoren invers zueinander sind und sich gegenseitig aufheben. Diese Eigenschaft ist für den Begriff eines Vektors in der Physik essentiell: In der Physik müssen Gesetzmäßigkeiten unabhängig vom speziellen Koordinatensystem gelten. Aus physikalischer Sicht muss ein Vektor, der z. B. die Geschwindigkeit eines Teilchens beschreibt, unabhängig vom gewählten Koordinatensystem sein.

Man spricht von einem kontravarianten Vektor (besser: kontravarianter Koordinatenvektor), wenn die Komponenten kontravariant und die Basisvektoren kovariant sind. Analog spricht man von einem kovarianten Vektor, wenn die Komponenten kovariant und die Basisvektoren kontravariant sind.

Kovariante Basis[Bearbeiten | Quelltext bearbeiten]

Die kovarianten Basisvektoren schmiegen sich in jedem Punkt tangential an die Koordinatenlinien an.

Normierte und natürliche Basisvektoren[Bearbeiten | Quelltext bearbeiten]

Die Tangenteneinheitsvektoren an die Koordinatenlinien bilden eine Basis, bestehend aus kovarianten Basisvektoren:

Diese Einheitsvektoren haben im Allgemeinen eine vom Ort abhängige Richtung .

Man definiert die Maßstabsfaktoren durch

,   somit

Die unnormierten Vektoren bilden die natürliche Basis, aus der man durch Normierung die unitäre Basis erhält (Einheitsvektoren). Die Vektoren der natürlichen Basis werden hier mit bezeichnet, die Vektoren der normierten Basis durch .

Kontravariante Komponenten: Vektoren als Linearkombination der kovarianten Basisvektoren[Bearbeiten | Quelltext bearbeiten]

Mit der neuen Basis lassen sich nun alle Vektoren durch die Basisvektoren der kovarianten Basis (normiert) bzw. (unnormiert = natürliche Basisvektoren) ausdrücken:

Krummlinige, affine und Kartesische Koordinaten
hier qi statt ui: Koordinatenflächen, Koordinatenlinien und Koordinatenachsen (entlang der Basisvektoren eines ausgewählten Ortes)

0 thoughts on “Krummlinige Koordinaten Beispiel Essay

Leave a Reply

Your email address will not be published. Required fields are marked *